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BACKGROUND
Image recognition is an extremely difficult task for comput-
ers. Humans have no trouble with this task, so why not try
to mimic how people see?

We use PetaVision (a high-performance neural simulation
toolbox)[1] to replicate the behaviour of the visual cortex
by training a convolutional neural network to sparsely code
images using a learned dictionary of features {φm}.

Given an input s, PetaVision creates a sparse reconstruction
ŝ such that

ŝ =
∑
m

amφm (1)

where am is the activity of themth neuron, and φm is themth

feature kernel. This is done by minimizing the following
energy function:

E =
1

2
‖s− ŝ‖2︸ ︷︷ ︸

Reconstruction error

+λ
∑
|am|︸︷︷︸

Activation cost

(2)

via a combination of gradient and stochastic gradient de-
scent on am and φm respectively, where λ determines spar-
sity[2]. We investigate how PetaVision’s behavior changes
as λ varies and observe a minima in the reconstruction er-
ror of our network for a certain value of sparsity.

Minima in system parameters can indicate that a phase
transition is occurring.

If this is the case in PetaVision, then we can take advantage
of the scaling laws inherent to phase transitions to be able
to predict the most efficient sparsity for any network size.

PHASE TRANSITIONS
A phase transition occurs when a system shifts between
two (or more) different regimes of dynamics (phases).

A critical point is the point "in between" these phases,
where the system cannot be said to be in one phase or the
other.

Critical points exist at maxima or minima of the system
undergoing a phase transition, and follow very particular
scaling laws as the system size is changed.

In this case the potential critical point we are investigat-
ing is the minima in percent reconstruction error, and the
system size corresponds to the number of neurons in our
network.

If our system is undergoing a phase transition, and the min-
ima in percent reconstruction error is a critical point, then
our system should obey the following scaling laws:

Value at Minima ∼ Lγ/ν (3)

Location of Minima ∼ L1/ν (4)

where L is the system size, and γ and ν are "critical expo-
nents", which (along with a few others) completely describe
the dynamics of the system around the critical point[4].

These critical exponents would allow us to predict the op-
timal sparsity of our network for any system size.
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PETAVISION

Using PetaVision, we construct the
denoising network seen in Figure 2
and train it by reconstructing 50,000
CIFAR-10 images[3] using varying
numbers of features.

We then test the efficiency of the sparse
representation found by the V1 layer
by measuring the reconstruction error
when reconstructing 10,000 CIFAR-10
test images that have had Gaussian
noise added to them.

Figure 1: Feature kernel found by the V1
layer for the sparse representation

Input

Noise

InputError

V1

InputRecon

Figure 2: Denoising network

The Input layer feeds the input image into
subsequent layers. For this project, we

used the CIFAR-10 image set which con-
sists of 60,000 32x32 thumbnail images.

The Noise layer adds random Gaussian
noise to the input image. During train-

ing of the V1 layer, this layer is disabled.

The InputError layer computes the dif-
ference between the input and the re-

construction and feeds into the V1 layer
to improve the sparse representation.

The V1 layer performs a convolution of the
input to find a feature kernel, a set of small

image primitives, that best reproduce the
input images when combined (Figure 1).

The InputRecon layer reconstructs the
sparse combination of the features found
in the V1 layer into a 32x32 RGB image.

CONCLUSION
The existence of the minima in reconstruction error coupled
with the power law behavior of the critical point as the sys-
tem size is increased demonstrates the existence of a phase
transition occurring as the sparsity of the system is varied.

We can improve efficiency of PetaVision by operating at the
critical point of this phase transition.

The extracted critical exponents can be used to extrapolate
the ideal sparsity for any given system size.

FUTURE WORK
Future work for this project entails examining this phase
transition in networks constructed for different tasks in-
cluding image classification, video frame prediction, and
compressive sensing.

Additionally, we can quantify the response function χ of
the network by measuring how the system responds to per-
turbations as the image is being denoised. Near the critical
point χ should follow the relation χ ∼ λγ , allowing us to
verify our value of γ.

RESULTS
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Log−Log Plot of Minimum Reconstruction Error vs System Size
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Log−Log Plot of Percent Active Neurons vs System Size
We computed† the reconstruction error vs the percentage
of active neurons for many different system sizes (number
of neurons). The top left plot shows how the reconstruc-
tion error behaves as a function of percent active neurons
for different system sizes. The top right plot shows how the
minimum reconstruction error behaves as the system size
increases. The bottom left plot shows how the percentage
of active neurons at the minima changes as system size in-
creases.

Critical Exponent Value

γ 0.00985
ν -1.32

Table 1: Extracted critical exponents

We observe the power law scaling behavior required in
equations (3) and (4) in the respective plots versus system
size. We extract the critical exponents γ and ν via equations
(3), (4), and the power law relations found in the system size
plots. We report γ = 0.00985 and ν = −1.32 for this sparsely
coded convolutional neural network.

The existence of this power law scaling relation between the
minima, percent active and system size verifies that there is
a phase transition occuring as the sparsity varies.

† These results were computed on Power8 nodes consisting of two IBM Power8 CPUs and two Nvidia P100 accelerators. We parallelized the
network by doing batch training with 64 MPI ranks per node, and two OpenMP threads per rank.


